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BAYESIAN MODEL CLASS SELECTION 

 

 Introduction:  

We must first ask a question before starting the topic of model class selection: 

What constitutes a good model class? 

Option 1: A good model class is a set of models such that there exists a model in the 

set that can fit the data well (we will state this as “the model class fits data 

well” for convenient later). Does this sound right? This cannot be right! 

Consider a case where we would like to fit a curve to 10 data points. We all 

know that the model class of ninth-order polynomials can fit the data. But 

this makes no sense since they overfit the data. In fact, to fit the data well is 

only necessary for a good model class but not sufficient. 

Option 2: A good model class should (1) fit the data well and (2) predict unseen 

testing data well. Now it sounds right. 

 

Notation change: the data is now D. Based on the above discussion, the “score” of a 

model class M should depend on two sub-scores: (1) the score of fitting training data 

1D̂ : ( )1 1
ˆ |score D M  and (2) the score of predicting testing data 2D̂  after trained by 

1D̂ : ( )2 2 1
ˆ ˆ| ,score D D M . The final score of M, denoted by ( )1 2

ˆ ˆ, |S D D M , should 

monotonically depend on ( )1 1
ˆ |score D M  and ( )2 2 1

ˆ ˆ| ,score D D M . 

 

 Score examples:  

Example 1: 

( ) ( )

( ) ( )

2

1 1 1

2

2 2 1 1 2

ˆ ˆ|

ˆ ˆ ˆ ˆ| , " "

score D M training error of M to D

score D D M testing error of M trained by D to D

= −

= −

 

( )1 2 1 2
ˆ ˆ, |S D D M score score= +  

Note: ( ) ( )1 2 2 1
ˆ ˆ ˆ ˆ, | , |S D D M S D D M≠ . Does this sound right? 

Example 2: 

( ) ( )

( ) ( )

1 1 1

2 2 1 2 1

ˆ ˆ| |

ˆ ˆ ˆ ˆ| , | ,

score D M f D M

score D D M f D D M

=

=
 

( )2 1 1 2 1 2
ˆ ˆ ˆ ˆ ˆ| , ( , | ) ( | )S D D M f D D M f D M score score= = = ×  
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Note that now ( ) ( )1 2 2 1
ˆ ˆ ˆ ˆ ˆ, | , | ( | )S D D M S D D M f D M= = . In the following, we 

choose ˆ( | )f D M  to quantify how good M is. 

 

 Remarks:  

1. When computing ˆ( | )f D M , in reality we don’t need to divide the data D̂  into 

1D̂  and 2D̂ : the principle of training and testing has been built into ˆ( | )f D M  

even though we don’t really do training and testing explicitly. Moreover, we don’t 

need to worry about how to divide the data D̂  into training and testing data 

because it is clear that no matter how we make the division, the resulting score 

ˆ( | )f D M  will be the same. 

2. The score ˆ( | )f D M  is called the evidence of M. Sometimes it is called the 

marginal likelihood of M. 

3. Given two model classes that can fit the data D̂  well, the simpler model class 

will often have higher evidence. This can be seen using the following illustration: 

consider that we would like to fit a data set D̂  that looks like a straight line using 

two model classes: (1) M1 consists of all straight lines and (2) M2 consists of all 

2
nd

 order polynomials. Note that both model classes can fit the data perfectly but 

M2 can fit more data. Observe that the evidence is a PDF in the data space, i.e. in 

the data space the volume under ( | )if D M  is always 1. Since M2 can fit more 

data than M1, that means the flat region in 2( | )f D M  is wider than that in 

1( | )f D M . This implies that 1
ˆ( | )f D M  > 2

ˆ( | )f D M . 

 

 

 

 

 

 

 

4. Posterior probability of model classes and model class averaging: 

One can derive the posterior probability for each model class from the Bayes rule: 

D̂  

D 

2( | )f D M

1( | )f D M

D̂
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( )
( ) ( )

( ) ( )
1

ˆ | |
ˆ| ,

ˆ | |

i i

i m

j j

j

f D M P M
P M D

f D M P M
=

Ω
Ω =

Ω∑
 

where 1{ ,..., }mM MΩ =  and also specifying the prior probability of Mi. 

Robust estimation/prediction (model class averaging): 

( ) ( ) ( )
1

ˆ ˆ| , | , | ,
m

i i

i

E g X D P M D E g X D M
=

   Ω = Ω ⋅   ∑  

 

 How to evaluate ( )iMDf |  

Option 1: asymptotic approximation 

 ( ) ( )
( ) ( )

( ) ( )

* *

2

2 * *

ˆ | , |
ˆ | 2

ˆlog | , |

i

i

n
i i i i

i

x i i i i

f D M x f x M
f D M

f D M x f x M

π≈

 −∇
 

 

 Good for asymptotic cases. Requires solving optimization problems. 

Option 2: sample directly from prior PDF 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ), ,|
1

ˆ ˆ ˆ| , | | , |

1ˆ ˆ ˆ ˆ| , | , ~ |
i i

i i i i i i i i i

N

i i i i k i k i if x M
k

f D M f D x M dx f D M x f x M dx

E f D M X f D M X X f x M
N =

= =

 = ≈
 

∫ ∫

∑
 

 

 

 

 

 

Not a good choice since the main support regions of the prior and likelihood can 

be very different. Also, the likelihood is usually quite peaked. Sampling just 

from the prior can have high chance of missing the important region of the 

likelihood. 

Option 3: importance sampling 

Let ( )q x  be the importance sampling PDF, 

( )
( ) ( )

( )
( )

( ) ( )

( )

( ) ( )
( )

, ,

,

1 ,

ˆ ˆ| , | | , |
ˆ |

ˆ ˆ ˆ| , |1 ˆ ~ ( )
ˆ

i i i i i i i i

i i i q

i i

N
i i k i k i

i k i

k i k

f D M x f x M f D M X f X M
f D M q x dx E

q x q X

f D M X f X M
X q x

N q X=

 
 = =
 
 

≈

∫

∑

 

( )iiMDf θ,|( )ii Mf |θ
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Note: good for low dimensional X. May be inefficient for high dimensional X. 

The optimal choice is ( ) ( ) ( ) ( )ˆ ˆ| , | , |i i i i i i iq x f x D M f D M x f x M= ∝ . But we 

don’t know how to evaluate it since 

( )
( ) ( )

( )

ˆ ,| , |
ˆ| ,

ˆ |

i i i i

i i

i

f D M x f x M
f x D M

f D M
=  

Option 4: entropy approach 

Observe that  

( ) ( ) ( ) ( )ˆ ˆ ˆlog | log | , | log | ,i i i i i i if D M f D M x f x M f x M D = −
 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ˆ| ,

, , ,

1
:

ˆ ˆ ˆlog | log | , | log | ,

1 ˆ ˆ ˆ ˆ ˆlog | , | | , ~ | ,

i i
i i i i i i if x M D

N

i i k i k i i i i k i i

k
differential entropy
estimated from samples

f D M E f D M x f x M f x M D

f D M X f X M H f x M D X f x M D
N =

  = −
  

   ≈ +
   ∑

 

where the posterior samples can be drawn from ( )ˆ| ,i if x D M  using MCMC. 

The differential entropy of ( )ˆ| ,i if x D M  can also be estimated from the 

posterior samples (see [1] for estimating entropy from samples). 

From our experience, we found that the behavior of the estimator 

( ) ( ), ,

1

1 ˆ ˆlog | , |
N

i i k i k i

k

f D M X f X M
N =

 
 ∑  is quite nice. The possible reasons may 

include the following: (1) the posterior samples will not miss the central region 

of ( ) ( )ˆlog | , |i i i if D M x f x M 
 

 and (2) although the posterior samples may 

miss the tail region of ( ) ( )ˆlog | , |i i i if D M x f x M 
 

, where the function tends 

to minus infinity, but the contribution of that region is theoretically zero anyway. 

Option 5: transitional MCMC (later) 
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